
12.5

Strategy

The magnetic field at point P has been determined in Equation 12.15. Since the currents are flowing in opposite
directions, the net magnetic field is the difference between the two fields generated by the coils. Using the given
quantities in the problem, the net magnetic field is then calculated.

Solution

Solving for the net magnetic field using Equation 12.15 and the given quantities in the problem yields

B = µ0 IR1
2

2⎛
⎝y1

2 + R1
2⎞

⎠
3/2 − µ0 IR2

2

2⎛
⎝y2

2 + R2
2⎞

⎠
3/2

B = (4π × 10−7 T ⋅ m/A)(0.010 A)(0.5 m)2

2((0.25 m)2 + (0.5 m)2)3/2 − (4π × 10−7 T ⋅ m/A)(0.010 A)(1.0 m)2

2((0.75 m)2 + (1.0 m)2)3/2

B = 5.77 × 10−9 T to the right.

Significance

Helmholtz coils typically have loops with equal radii with current flowing in the same direction to have a strong
uniform field at the midpoint between the loops. A similar application of the magnetic field distribution created by
Helmholtz coils is found in a magnetic bottle that can temporarily trap charged particles. See Magnetic Forces
and Fields for a discussion on this.

Check Your Understanding Using Example 12.5, at what distance would you have to move the first
coil to have zero measurable magnetic field at point P?

12.5 | Ampère’s Law

Learning Objectives

By the end of this section, you will be able to:

• Explain how Ampère’s law relates the magnetic field produced by a current to the value of the
current

• Calculate the magnetic field from a long straight wire, either thin or thick, by Ampère’s law

A fundamental property of a static magnetic field is that, unlike an electrostatic field, it is not conservative. A conservative
field is one that does the same amount of work on a particle moving between two different points regardless of the path
chosen. Magnetic fields do not have such a property. Instead, there is a relationship between the magnetic field and its

source, electric current. It is expressed in terms of the line integral of B→ and is known as Ampère’s law. This law can

also be derived directly from the Biot-Savart law. We now consider that derivation for the special case of an infinite, straight
wire.

Figure 12.14 shows an arbitrary plane perpendicular to an infinite, straight wire whose current I is directed out of the
page. The magnetic field lines are circles directed counterclockwise and centered on the wire. To begin, let’s consider

∮ B→ · d l→ over the closed paths M and N. Notice that one path (M) encloses the wire, whereas the other (N) does not.

Since the field lines are circular, B→ · d l→ is the product of B and the projection of dl onto the circle passing through

d l→ . If the radius of this particular circle is r, the projection is rdθ, and

B→ · d l→ = Br dθ.
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Figure 12.14 The current I of a long, straight wire is directed out of the page. The integral ∮ dθ equals 2π and

0, respectively, for paths M and N.

With B→ given by Equation 12.9,

(12.20)∮ B→ · d l→ = ∮ ⎛
⎝

µ0 I
2πr

⎞
⎠ r dθ = µ0 I

2π ∮ dθ.

For path M, which circulates around the wire, ∮
M

dθ = 2π and

(12.21)∮
M

B→ · d l→ = µ0 I.

Path N, on the other hand, circulates through both positive (counterclockwise) and negative (clockwise) dθ (see Figure

12.14), and since it is closed, ∮
N

dθ = 0. Thus for path N,

(12.22)∮
N

B→ · d l→ = 0.

The extension of this result to the general case is Ampère’s law.

Ampère’s law

Over an arbitrary closed path,

(12.23)∮ B→ · d l→ = µ0 I

where I is the total current passing through any open surface S whose perimeter is the path of integration. Only currents
inside the path of integration need be considered.

To determine whether a specific current I is positive or negative, curl the fingers of your right hand in the direction of the
path of integration, as shown in Figure 12.14. If I passes through S in the same direction as your extended thumb, I is
positive; if I passes through S in the direction opposite to your extended thumb, it is negative.
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Problem-Solving Strategy: Ampère’s Law

To calculate the magnetic field created from current in wire(s), use the following steps:

1. Identify the symmetry of the current in the wire(s). If there is no symmetry, use the Biot-Savart law to
determine the magnetic field.

2. Determine the direction of the magnetic field created by the wire(s) by right-hand rule 2.

3. Chose a path loop where the magnetic field is either constant or zero.

4. Calculate the current inside the loop.

5. Calculate the line integral ∮ B→ · d l→ around the closed loop.

6. Equate ∮ B→ · d l→ with µ0 Ienc and solve for B→ .

Example 12.6

Using Ampère’s Law to Calculate the Magnetic Field Due to a Wire

Use Ampère’s law to calculate the magnetic field due to a steady current I in an infinitely long, thin, straight wire
as shown in Figure 12.15.

Figure 12.15 The possible components of the magnetic field
B due to a current I, which is directed out of the page. The radial
component is zero because the angle between the magnetic field
and the path is at a right angle.

Strategy

Consider an arbitrary plane perpendicular to the wire, with the current directed out of the page. The possible
magnetic field components in this plane, Br and Bθ, are shown at arbitrary points on a circle of radius r

centered on the wire. Since the field is cylindrically symmetric, neither Br nor Bθ varies with the position on

this circle. Also from symmetry, the radial lines, if they exist, must be directed either all inward or all outward
from the wire. This means, however, that there must be a net magnetic flux across an arbitrary cylinder concentric

with the wire. The radial component of the magnetic field must be zero because B→ r ⋅ d l→ = 0. Therefore,

we can apply Ampère’s law to the circular path as shown.
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Solution

Over this path B→ is constant and parallel to d l→ , so

∮ B→ · d l→ = Bθ ∮ dl = Bθ(2πr).

Thus Ampère’s law reduces to

Bθ(2πr) = µ0 I.

Finally, since Bθ is the only component of B→ , we can drop the subscript and write

B = µ0 I
2πr .

This agrees with the Biot-Savart calculation above.

Significance

Ampère’s law works well if you have a path to integrate over which B→ · d l→ has results that are easy to

simplify. For the infinite wire, this works easily with a path that is circular around the wire so that the magnetic
field factors out of the integration. If the path dependence looks complicated, you can always go back to the Biot-
Savart law and use that to find the magnetic field.

Example 12.7

Calculating the Magnetic Field of a Thick Wire with Ampère’s Law

The radius of the long, straight wire of Figure 12.16 is a, and the wire carries a current I0 that is distributed

uniformly over its cross-section. Find the magnetic field both inside and outside the wire.

Figure 12.16 (a) A model of a current-carrying wire of radius
a and current I0. (b) A cross-section of the same wire showing

the radius a and the Ampère’s loop of radius r.

Strategy

This problem has the same geometry as Example 12.6, but the enclosed current changes as we move the
integration path from outside the wire to inside the wire, where it doesn’t capture the entire current enclosed (see
Figure 12.16).

Solution

For any circular path of radius r that is centered on the wire,
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∮ B→ · d l→ = ∮ Bdl = B∮ dl = B(2πr).

From Ampère’s law, this equals the total current passing through any surface bounded by the path of integration.

Consider first a circular path that is inside the wire (r ≤ a) such as that shown in part (a) of Figure 12.16. We

need the current I passing through the area enclosed by the path. It’s equal to the current density J times the area
enclosed. Since the current is uniform, the current density inside the path equals the current density in the whole

wire, which is I0 / πa2. Therefore the current I passing through the area enclosed by the path is

I = πr2

πa2I0 = r2

a2I0.

We can consider this ratio because the current density J is constant over the area of the wire. Therefore, the current
density of a part of the wire is equal to the current density in the whole area. Using Ampère’s law, we obtain

B(2πr) = µ0
⎛
⎝

r2

a2
⎞
⎠I0,

and the magnetic field inside the wire is

B = µ0 I0
2π

r
a2 (r ≤ a).

Outside the wire, the situation is identical to that of the infinite thin wire of the previous example; that is,

B = µ0 I0
2πr (r ≥ a).

The variation of B with r is shown in Figure 12.17.

Figure 12.17 Variation of the magnetic field produced by a current
I0 in a long, straight wire of radius a.

Significance

The results show that as the radial distance increases inside the thick wire, the magnetic field increases from zero
to a familiar value of the magnetic field of a thin wire. Outside the wire, the field drops off regardless of whether
it was a thick or thin wire.

This result is similar to how Gauss’s law for electrical charges behaves inside a uniform charge distribution,
except that Gauss’s law for electrical charges has a uniform volume distribution of charge, whereas Ampère’s
law here has a uniform area of current distribution. Also, the drop-off outside the thick wire is similar to how an
electric field drops off outside of a linear charge distribution, since the two cases have the same geometry and
neither case depends on the configuration of charges or currents once the loop is outside the distribution.
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Example 12.8

Using Ampère’s Law with Arbitrary Paths

Use Ampère’s law to evaluate ∮ B→ · d l→ for the current configurations and paths in Figure 12.18.

Figure 12.18 Current configurations and paths for Example
12.8.

Strategy

Ampère’s law states that ∮ B→ · d l→ = µ0 I where I is the total current passing through the enclosed loop. The

quickest way to evaluate the integral is to calculate µ0 I by finding the net current through the loop. Positive

currents flow with your right-hand thumb if your fingers wrap around in the direction of the loop. This will tell
us the sign of the answer.

Solution

(a) The current going downward through the loop equals the current going out of the loop, so the net current is

zero. Thus, ∮ B→ · d l→ = 0.

(b) The only current to consider in this problem is 2A because it is the only current inside the loop. The right-hand
rule shows us the current going downward through the loop is in the positive direction. Therefore, the answer is

∮ B→ · d l→ = µ0(2 A) = 2.51 × 10−6 T ⋅ m/A.

(c) The right-hand rule shows us the current going downward through the loop is in the positive direction. There
are 7A + 5A = 12A of current going downward and –3 A going upward. Therefore, the total current is 9 A and

∮ B→ · d l→ = µ0(9 A) = 5.65 × 10−6 T ⋅ m/A.

Significance

If the currents all wrapped around so that the same current went into the loop and out of the loop, the net current
would be zero and no magnetic field would be present. This is why wires are very close to each other in an
electrical cord. The currents flowing toward a device and away from a device in a wire equal zero total current
flow through an Ampère loop around these wires. Therefore, no stray magnetic fields can be present from cords
carrying current.
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12.6 Check Your Understanding Consider using Ampère’s law to calculate the magnetic fields of a finite
straight wire and of a circular loop of wire. Why is it not useful for these calculations?

12.6 | Solenoids and Toroids

Learning Objectives

By the end of this section, you will be able to:

• Establish a relationship for how the magnetic field of a solenoid varies with distance and
current by using both the Biot-Savart law and Ampère’s law

• Establish a relationship for how the magnetic field of a toroid varies with distance and current
by using Ampère’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or another, they
are part of numerous instruments, both large and small. In this section, we examine the magnetic field typical of these
devices.

Solenoids
A long wire wound in the form of a helical coil is known as a solenoid. Solenoids are commonly used in experimental
research requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its magnetic field is quite
uniform and directly proportional to the current in the wire.

Figure 12.19 shows a solenoid consisting of N turns of wire tightly wound over a length L. A current I is flowing along
the wire of the solenoid. The number of turns per unit length is N/L; therefore, the number of turns in an infinitesimal length
dy are (N/L)dy turns. This produces a current

(12.24)dI = NI
L dy.

We first calculate the magnetic field at the point P of Figure 12.19. This point is on the central axis of the solenoid. We
are basically cutting the solenoid into thin slices that are dy thick and treating each as a current loop. Thus, dI is the current

through each slice. The magnetic field d B→ due to the current dI in dy can be found with the help of Equation 12.15

and Equation 12.24:

(12.25)
d B→ = µ0 R2 dI

2(y2 + R2)3/2 j
^

=
⎛

⎝
⎜µ0 IR2 N

2L j
^⎞

⎠
⎟ dy
(y2 + R2)3/2

where we used Equation 12.24 to replace dI. The resultant field at P is found by integrating d B→ along the entire length

of the solenoid. It’s easiest to evaluate this integral by changing the independent variable from y to θ. From inspection of

Figure 12.19, we have:

(12.26)sinθ = y
y2 + R2

.
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